International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Catalase Immobilized ZnO Nanorod with β-cyclodextrin Functionalization for Electrochemical Determination of Forchlorfenuron

Haiwei Xie^{1*}, Bing Wen¹, Hui Xu¹, Liu Liu² and Yong Guo²

¹Department of Food and Bioengineering, Bengbu University, Bengbu 233030, P. R. China ²College of BioScience and Biotechnology, South China University of Technology, Guangzhou, 510640, P. R. China

*E-mail: <u>haiweixie_bbu@yahoo.com</u>

doi: 10.20964/110402612

Received: 24 January 2016 / Accepted: 18 February 2016 / Published: 1 March 2016

In this communication, we demonstrated a forchlorfenuron (FF) electrochemical biosensor based on a catalase immobilized ZnO nanorod with β -cyclodextrin functionalization (CA- β -CD-ZnO). CA was immobilized on the β -CD functionalized ZnO rods. The prepared CA- β -CD-ZnO was highly sensitive to the electrochemical reduction of H_2O_2 . After introduction of FF into the H_2O_2 electrochemical detection system, the current change had a linear relationship with the FF concentration. Investigation showed the CA- β -CD-ZnO could be used for detecting FF in the concentration range between 0.005 to 2 μ M with a low detection limit of 0.002 μ M. Moreover, the CA- β -CD-ZnO was successfully demonstrated for FF detection in fruit samples.

Keywords: Catalase; ZnO rod; β-cyclodextrin; Forchlorfenuron; Electrochemical sensor

FULL TEXT

© 2016 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).