Porous MnNi$_2$O$_4$ Nanorods as an Efficient Bifunctional Catalyst for Rechargeable Li–O$_2$ battery

Jun Li1,2†, Yuan Li3†, Kun Guo4, Liangliang Zou1,* Qinghong Huang1, Zhiqing Zou1 and Hui Yang1,*

1 Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai, 201210, China
2 University of the CAS, Beijing 100039, China
3 Technology Center, China Tobacco Hebei Industrial Company, Ltd., Shijiazhuang 050051, China
4 Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
† These authors contribute equally to this work
* E-mail: yangh@sari.ac.cn, zoull@sari.ac.cn

doi: 10.20964/110403227

Received: 17 December 2015 / Accepted: 19 January 2016 / Published: 1 March 2016

Spinel-type porous MnNi$_2$O$_4$ nanorods are prepared using a facile electrospinning and subsequent calcination approach. A MnNi$_2$O$_4$ nanoparticle material is also synthesized via the sol-gel method to explore the effect of surface area, pore diameter and pore volume on catalytic activity. The crystal phase and morphology of the samples are confirmed by X-ray diffractometry and transmission electron microscopy. Linear sweep voltammetry analysis shows that the MnNi$_2$O$_4$ nanorods electrode exhibits better activities in oxygen reduction and evolution reactions than the prepared MnNi$_2$O$_4$ nanoparticles or Ketjenblack electrodes. The sequenced activities of these three materials are further supported by a reduction in both the discharge and recharge overpotentials during battery tests. Furthermore, batteries with the MnNi$_2$O$_4$ nanorods present improved rate capability and cyclability compared with the MnNi$_2$O$_4$ nanoparticles and Ketjenblack. This enhanced performance is explained by the large surface area, mean pore diameter, and pore volume of the MnNi$_2$O$_4$ nanorods. These results highlight the importance of porous MnNi$_2$O$_4$ nanorods as a prospective bifunctional catalyst and a potential method of electrospinning to scale up the preparation of catalysts for rechargeable Li–O$_2$ batteries.

Keywords: Lithium–air batteries, Bi-functional catalyst, MnNi$_2$O$_4$, Porous nanorods

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).