The Influence of Nickel on Corrosion Behavior of Low Alloy Steel in a Cyclic Wet-dry Condition

Cheng Wen, Yuwan Tian, Gui Wang *, Jiezhen Hu, Peichang Deng

Engineering College, Guangdong Ocean University, Zhanjiang 524088, China
*E-mail: wcheng3jia@163.com

doi: 10.20964/110148

Received: 1 November 2015 / Accepted: 22 February 2016 / Published: 1 April 2016

The marine atmosphere corrosion behavior of a low alloy steel with different nickel contents (0, 0.8, 2, 5 wt%) was studied in the alternate wet-dry conditions (dry/wet conditions). The technique of polarization curves, EIS and SEM were used to study the effect of Ni on the corrosion resistance of four steels, which indicated that the addition of Ni shifted the corrosion potential of the steel in the positive direction and made the corrosion current density lower. The enhancement of the corrosion resistance of steel favored the formation of a homogeneous and compact inner rust layer, and the higher the content of nickel was in the steel, the faster the protective rust layer was generated.

Keywords: corrosion resistance, low alloy steel, cyclic wet-dry condition, nickel

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).