Corrosion of Newly Manufactured Nanocrystalline Al and Two of its Alloys in stagnant 4.0% NaCl Solutions

El-Sayed M. Sherif¹,²,*, Hany S. Abdo¹,³, Jabair A. Mohammed¹, Abdulhakim A. Almajid¹,⁴ and Asiful H. Seikh¹

¹Center of Excellence for Research in Engineering Materials (CEREM), Advanced Manufacturing Institute, King Saud University, P. O. Box 800, Al-Riyadh 11421, Saudi Arabia
²Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry, National Research Centre (NRC), Dokki, 12622 Cairo, Egypt
³Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, Aswan 81521, Egypt
⁴Mechanical Engineering Department, King Saud University, P.D. Box 800, Riyadh 11421, Saudi Arabia
*E-mail: esherif@ksu.edu.sa, emsherif@gmail.com

doi: 10.20964/2016.06.21

Received: 2 March 2016 / Accepted: 12 April 2016 / Published: 4 May 2016

In this study, pure nanocrystalline Al and two of its alloys; namely Al-7%Cu and Al-7%Cu-3%Ti, were manufactured after 5.0 h milling period of time using mechanical attrition. All samples were sintered for 3 min at 600 °C using high frequency heat induction sintering furnace. The sizes of the crystallite and the hardness of the manufactured Al and its alloys were determined using X-ray diffractometer and Vickers hardness (VH) investigations, respectively. The effect of adding 7%Cu and 7%Cu+3%Ti on the corrosion of the fabricated pure aluminum in 4.0% NaCl solutions was carried out. The corrosion tests used in this study were cyclic polarization, change of current with time, and electrochemical impedance spectroscopy measurements. It was found that the presence of Cu increases the hardness of Al and this effect was highly increased in the presence of Cu and Ti together with Al. Moreover, adding Cu and further Cu and Ti increased the corrosion of Al. Adding Cu and Cu with Ti was found to increase the corrosion current, corrosion rate, anodic current, and cathodic current of Al. All results were consistent with each other and proved that the presence of Cu and Ti increases the hardness as well as the corrosion behavior of Al.

Keywords: nanocrystalline; Al alloys; corrosion; mechanical attrition; Vickers hardness; EIS; polarization
FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).