Application of Pd-modified Nickel Foam Cathodes to the Process of Alkaline Water Electrolysis

Boguslaw Pierozynski*, Tomasz Mikolajczyk

Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-957 Olsztyn, Poland

*E-mail: bogpierozynski@yahoo.ca

doi: 10.20964/2016.06.1

Received: 21 February 2016 / Accepted: 17 March 2016 / Published: 1 May 2016

This work presents an investigation of hydrogen evolution reaction (HER) through the process of alkaline water electrolysis (AWE), performed by means of pure and palladium-modified nickel foam cathodes, and stainless steel anodes. Temperature-dependent kinetics of the HER were studied in 2 and 8 M KOH, over the temperature range: 20-60 °C through a.c. impedance spectroscopy and d.c. galvanostatic electrochemical experiments. The charge-transfer resistance, exchange current-density for the HER and other electrochemical parameters for examined catalyst samples were presented.

Keywords: Renewable energy; Alkaline water electrolysis; Pd-modified Ni foam; HER; Impedance spectroscopy

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).