Application of Single-Walled Carbon Nanotubes/Au Nanosol Modified Electrode for the Electrochemical Determination of Esculetin in Cortex Fraxini

Yuanyuan Yao1, 2, Xiaomei Zhang1, Na Li1, Xuming Liang1, Yangping Wen2, 3, Hui Zhang2, 3, Yilong Chen1, Dajian Yang1, *, and Jingkun Xu2, *

1 Chongqing Academy of Chinese Materia Medica, Chongqing 400065, P. R. China
2 School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
3 Key Laboratory of Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, PR China
*E-mail: yangdajian@foxmail.com, xujingkun@tsinghua.org.cn

Received: 15 April 2016 / Accepted: 19 May 2016 / Published: 4 June 2016

doi: 10.20964/2016.07.59

A novel simple, sensitive and selective electrochemical sensor was successfully prepared for the determination of esculetin in Cortex Fraxini based on the carboxylic acid-functionalized single-walled carbon nanotubes-Nafion–Au nanosol nanocomposite modified glassy carbon electrode (c-SWCNTs-NF–AuNs/GCE). Scanning electron microscopy, energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry were carried out to characterize the properties of c-SWCNTs-NF–AuNs nanocomposite. Owing to the synergistic effects of large surface area, superior electrical conductivity, and large amount of chemically active sites of c-SWCNTs, together with the good biocompatibility and high conductivity of AuNs, the c-SWCNTs-NF–AuNs/GCE exhibited a good electrocatalytic activity to esculetin with wide linear range of 0.004–55 \textmu M and low detection limit of 0.12 nM. Additionally, the modified electrode was employed for analysis of esculetin in Cortex Fraxini with satisfactory results.

\textbf{Keywords:} Electrochemical determination; Differential pulse voltammetry; Single-walled carbon nanotube; Au nanosol; Esculetin;

\textbf{FULL TEXT}

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).