Short Communication

One-step Synthesis of Low-cost and High Active Li$_2$MnO$_3$ Cathode Materials

Guanrao Liu, and Shichao Zhang*

School of Materials Science & Engineering, Beijing University of Aeronautics & Astronautics, Beijing 100191, China
*E-mail: csc@buaa.edu.cn

doi: 10.20964/2016.07.35

Received: 5 April 2016 / Accepted: 11 May 2016 / Published: 4 June 2016

Nanostructured (10–50 nm) cathode material Li$_2$MnO$_3$ was simply prepared via facile one-step hydrothermal process without any further treatment by controlling reaction parameters, including the reaction time, proportion of processor, and the reagent concentration. The obtained Li$_2$MnO$_3$ products were well crystallized by a monoclinic structure with a space group of $C2/m$ phase. The materials exhibit a lower activation potential when being cycled, and delivered electrochemical performance between 4.3V and 2.0 V at room temperature, with a capacity of 243 mAh·g$^{-1}$. The structural information of the prepared materials advances the understanding of corresponding electrochemical properties.

Keywords: Li$_2$MnO$_3$, Cathode Materials, Hydrothermal, Lithium-ion Batteries.

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).