Capacity Improvement of Tin-Deposited on Carbon-Coated Graphite Anode for Rechargeable Lithium Ion Batteries

In-Tae Kim¹, Jaeho Lee¹,³, Jung-Chun An², Euney Jung⁴, Hong-Ki Lee⁵, Masayuki Morita¹,*, Joongpyo Shim³,*

¹ Graduate School of Science and Engineering, Yamaguchi University, Ube, 755-8611, Japan
² Research Institute of Industrial Science & Technology, Pohang, Gyeongbuk 37673, Korea
³ Department of Nano & Chemical Engineering, Kunsan National University, Jeonbuk, 54150, Korea
⁴ Ruby Co., Ltd., Wanju-gun, Jeonbuk, 55319, Korea
⁵ Fuel Cell Regional Innovation Center, Woosuk University, Jeonbuk, 55319, Korea
*E-mail: morita@yamaguchi-u.ac.jp, jpshim@kunsan.ac.kr

doi: 10.20964/2016.07.15

Received: 15 March 2016 / Accepted: 3 May 2016 / Published: 4 June 2016

Sn nanoparticles (NPs) were dispersed on carbon-coated graphite (cG) substrate by the impregnation method using SnCl₂ as the precursor and NaBH₄ as the reducing agent. Sucrose was carbonized to form the coating layer on graphite. The amount of the amorphous carbon-coating layer on the graphite was measured by thermogravimetric analysis. The results of scanning electron microscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy confirmed the deposition of Sn NPs on the graphite substrate. Sn-deposited materials were electrochemically characterized by charge-discharge cycling. Sn-deposited graphite (Sn/G) showed higher capacity than graphite, and Sn-deposited cG (Sn/cG) showed better electrochemical performance than Sn/G in terms of capacity, coulombic efficiency and cyclability.

Keywords: Rechargeable lithium-ion batteries, Sn nanoparticles, Carbon-coated graphite

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).