Short Communication

Fractal Growth of SiO$_x$ Nanoparticles Accompany with Graphene Preparation

Dongjiu Zhang*, Haifeng Cheng, Zhaoyang Zhang, Yue Kang

National Key Laboratory of Science and Technology on Advanced Ceramic Fiber and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, People’s Republic of China.
E-mail: dongjiuz@sina.cn

doi: 10.20964/2016.07.23

Received: 11 January 2016 / Accepted: 25 March 2016 / Published: 4 June 2016

Anisotropic growth mode is generally leading to simple self-similarity patterns. This paper presents a new perspective of looking at SiO$_x$ growth accompanies with graphene growth which is in diffusion-controlled fractal growth process. Growth of SiO$_x$ on the surface of copper was in stages and the samples were constantly monitored by scanning electron microscope. To confirm the critical structure of different etched areas of graphene, Raman spectra as well as energy dispersive spectrum were performed. Morphologies of SiO$_x$ nanoparticles could be controlled by varying the Ar/H$_2$ flow rate ratios and silica gel concentrations. The characteristic topology of branch-like fractal patterns, identical to the topology of ternary-segment fractal line, is observed.

Keywords: SiO$_x$ Nanoparticles; fractal growth; graphene; diffusion-limited aggregation

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).