The Electrochemical Analysis of Cadmium in Choline Chloride/Urea Deep Eutectic Solvent Electrolyte at Carbon Nanotubes Modified Electrode

Jinting Gao¹,², Huabin Xiong¹,², Yuntao Gao¹,²*, Ji Zhang¹,², Hongqiao Yang¹,², Xiaoyan Ma¹,²

¹ The Engineering Laboratory of Polylactic Acid-Based Functional Materials of Yunnan, School of Chemistry and Biotechnology, Yunnan Minzu University, Kunming 650500, China.
² Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China.
*E-mail: ymz409@163.com

doi: 10.20964/2016.07.36

Received: 28 March 2016 / Accepted: 12 May 2016 / Published: 4 June 2016

The electrochemical behavior of Cd at choline chloride/urea electrolyte and multi-wall carbon nanotubes modified electrode was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A couple of sensitive and quasi-reversible redox peaks of Cd was obtained with -0.75 V of oxidation peak potential (Epa) and -0.91 of reduction peak potential (Epc) (∆E = 0.16 V) in choline chloride /urea ionic liquids and 0.1mol·L⁻¹ HAc-NaAc mixed buffer system (pH 5.4). A sensitive DPV method for the determination of Cd was proposed. The oxidation peak was linearly related to the concentration of Cd in the range of 6.0×10⁻⁴-1.5×10⁻² μg·mL⁻¹, the detection limit was 6.8×10⁻⁵ μg·mL⁻¹. The proposed method is quick, sensitive, reliable and can be used for the determination of Cd in environment and food.

Keywords: Cd; Choline chloride/urea solvent; Electrolyte; Multi-wall carbon nanotubes; Cyclic voltammetry; Differential pulse voltammetry.

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).