Short Communication

Electrochemical Studies of Three Disamarium Large Metallofullerenes Sm$_2$@D_2(35)-C$_{88}$, Sm$_2$@C_1(21)-C$_{92}$ and Sm$_2$@D_{3d}(822)-C$_{104}$

Jie Chen, Pei Zhang, Jianfeng Zhao, Hua Yang, and Ziyang Liu

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China

E-mail: zyliu@cjlu.edu.cn

doi: 10.20964/2016.07.50

Received: 16 March 2015 / Accepted: 3 May 2015 / Published: 4 June 2016

We isolated and purified three disamarium metallofullerenes of known structure, Sm$_2$@D_2(35)-C$_{88}$, Sm$_2$@C_1(21)-C$_{92}$ and Sm$_2$@D_{3d}(822)-C$_{104}$, by the reported method. Importantly, we characterized these three di-samarium metallofullerenes by cyclic voltammetry and differential pulse voltammetry, which is the first report of electrochemical studies of di-metallofullerenes containing divalent metal atoms. Their oxidation reactions are observed at a maximum positive potential compared with other endohedral metallofullerenes (EMFs), which, other than those of mono-samarium metallofullerenes, have never been reported. The electrochemical studies of these three compounds show much weaker electron-donating capacity and stronger electron-accepting capacity compared with the corresponding Sm-EMFs, fullerences, or cluster-metallofullerenes. Interestingly, further analysis shows that normal-metallofullerenes present narrower electrochemical potential gaps than cluster-metallofullerenes, which might be attributed to their stronger interaction between the inner metal ions and the carbon cage.

Keywords: endohedral metallofullerene, di-samarium, electrochemistry, cyclic voltammetry (CV), differential pulse voltammetry (DPV)

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).