Pulsed Fe Electro-Oxidation for Catalytic Synthesis of Hydantoin Derivatives

S. Santiago-Ruiz¹, L.J. Torres-Pacheco², M.T. Oropeza-Guzman²,* I. A. Rivero¹,*

¹Centro de Graduados e Investigación en Química, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, C.P. 22500 Tijuana, B. C., Mexico
²Centro de Investigacion y Desarrollo Tecnológico en Electroquímica, subsede Tijuana, Carretera Tijuana-Tecate km 26.5, Parque Industrial El Florido, C.P. 22444, Tijuana, B. C. México
*E-mail: irivero@tectijuana.mx, moropeza@cideteq.mx

doi: 10.20964/2016.07.13

Received: 21 January 2016 / Accepted: 15 April 2016 / Published: 4 June 2016

This paper presents an original and practical organic electrochemical/chemical (EC/C) synthesis to prepare hydantoin derivatives from N-Alkyl-piperidin-4-ones. The electrochemical assisted process is an alternative to the traditional Bucherer-Bergs method. The main contribution is the in-situ production of Fe (III), by pulsed electro-oxidation of an iron wire, in a methanol-water (1:1) mixture at 58°C. The oxidized iron, on the wire surface, served as catalyst in the traditional synthetic path of hydantoin derivatives, and the KCN and (NH₄)₂CO₃ aided as supporting electrolyte for the electrolytic process. EC/C prepared hydantoins were characterized by IR, NMR (¹H, ¹³C), and MS. The pulsed potential applied to the iron wire was 0.9V/Ag/AgCl/Cl⁻ sat KCl(MeOH) during 300s, alternated with -0.1V /Ag/AgCl/Cl⁻ sat KCl(MeOH) during 60s. The electrode potential program attempted to avoid electrode surface passivation. After identifying the produced hydantoins by a thin-layer chromatography, electric charge corresponding to the current integration during the pulses of 300 s (10 cycles) gave a total oxidation charge density of 5.57C/cm² for hydantoin 8-(3-nitrobenzyl)(-1,3,8-triazaespyrodecane-2,4-dione) and 2.68C/cm² for 8-(4-nitrobenzyl)(-1,3,8-triazaespyrodecane-2,4-dione). The EC/C synthesis was compared with the traditional Bucherer-Berg method, resulting in an increase of 12-fold more hydantoins in 60 min.

Keywords: hydantoins, N-piperidone, Fe electro-oxidation in metanol-water, organic electrochemical/chemical synthesis.

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).