Nitrogen-doped Graphene Modified Glassy Carbon Electrode for Anodic Stripping Voltammetric Detection of Lead Ion

Zuorui Wen¹, Xueliang Niu¹, Lijun Yan¹, Yanyan Niu¹, Dan Wang¹, Wei Sun¹,*, Zaifeng Shi¹, Lifeng Dong²,*

¹ College of Chemistry and Chemical Engineering, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Hainan Normal University, Haikou 571158, P R China
² Department of Physics, Hamline University, St. Paul, MN 55104, USA
*E-mail: swyy26@hotmail.com and donglifeng@qust.edu.cn

doi: 10.20964/2016.08.23

Received: 11 March 2016 / Accepted: 22 May 2016 / Published: 7 July 2016

Nitrogen-doped (NG) graphene modified glassy carbon electrode was prepared for sensitive electrochemical investigation on lead ion (Pb²⁺) with differential pulse anodic stripping voltammetry. Due to the large surface area, excellent conductivity and good adsorption ability of NG nanosheet, Pb²⁺ can be accumulated and detected with enhanced voltammetric response in the concentration range from 9.0×10⁻⁹ mol/L to 9.0×10⁻⁵ mol/L. The detection limit was calculated as 1.91×10⁻⁹ mol/L and the proposed method was applied to fish powder sample determination.

Keywords: Nitrogen-doped graphene; Glassy carbon electrode; Differential pulse anodic stripping voltammetry; Lead ion

FULLTEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).