Ultra-long Nanorods of Single-crystalline Na$_{0.44}$MnO$_2$ as Cathode Materials for Sodium-ion Batteries

Rui Ma, Handong Jiao, Hongmin Zhu, Shuqiang Jiao*

State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
*E-mail: sjiao@ustb.edu.cn

doi: 10.20964/2016.08.68

Received: 22 May 2016 / Accepted: 19 June 2016 / Published: 7 July 2016

Rechargeable batteries composed of low-cost and abundant materials operating at room temperature are attractive for grid-scale energy storage application. Sodium-ion battery is thought of as an ideal candidate for secondary battery. Hence, ultra-long nanorods of single-crystalline Na$_{0.44}$MnO$_2$ have been synthesized by co-precipitation method followed by high-temperature calcination. The obtained powder is pure phase with an orthorhombic lattice structure and the morphology is regular. Their electrochemical properties were thoroughly investigated in assembled Sodium-ion cells using cyclic voltammetry, galvanostatic testing, and electrochemical impedance spectroscopy. With applying the as-prepared Na$_{0.44}$MnO$_2$ as a cathode material for sodium-ion batteries, it exhibits a high reversible initial capacity of 94.1 mAh g$^{-1}$ in a voltage range of 2.0-4.0 V vs. Na$^+$/Na at a current density of 50 mA g$^{-1}$, and a satisfactory cyclability of 93.3% capacity retention after 200 cycles is performed in our work. The single-crystalline Na$_{0.44}$MnO$_2$ with an excellent electrochemical performance proves that it is a potential cathode material for sodium-ion battery.

Keywords: Na$_{0.44}$MnO$_2$, single-crystalline, co-precipitation method, cathode materials

FULLTEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).