Facile PVP-Assisted Synthesis of MnO$_2$@MWNT Composites and their Application in Supercapacitors

Yong Qian, Chenling Huang, Rong Chen, Shizhen Dai, Chunyan Wang*

Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 344000, P.R. China

*E-mail: chywang9902@163.com

doi: 10.20964/2016.09.45

Received: 16 June 2016 / Accepted: 19 July 2016 / Published: 7 August 2016

A composite of well dispersed MnO$_2$ nanoparticles adhered on multi-walled carbon nanotubes (MnO$_2$@MWNT) is obtained through facile hydrothermal process and followed by high temperature annealing. The nanoscale MnO$_2$ particles were homogeneously distributed on the surface of MWNTs under polyvinyl pyrrolidone (PVP)-assisted reaction. The MnO$_2$@MWNT composite (34.43 wt. % MnO$_2$) displays a high specific capacitance of 285.12 F/g at a current density of 1 A/g in 1 M Na$_2$SO$_4$ electrolyte. The electrode exhibits good cycling stability, which the specific capacitance retention retains up to 90.17% after 1000 cycles at 1 A/g.

Keywords: Supercapacitor; MnO$_2$@MWNT; PVP-assisted synthesis

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).