One-pot Hydrothermal Synthesis of ZnO Microspheres/Graphene Hybrid and its Electrochemical Performance

Ye Lin¹, Hongdong Liu¹,* , Zhongli Hu¹, Rong Hu¹, Haibo Ruan¹, Lei Zhang²,*

¹ Research institute for new materials technology, Chongqing university of arts and sciences, Chongqing 402160, PR China
² College of life science, Chongqing normal university, Chongqing 401331, PR China
*E-mail: lhd0415@126.com, leizhang0215@126.com

doi: 10.20964/2016.09.04

Received: 29 May 2016 / Accepted: 11 July 2016 / Published: 7 August 2016

In this paper, the ZnO microspheres/graphene hybrids were successfully prepared from zinc acetate and GO aqueous solution by a facile one-pot hydrothermal method without any surfactant. The as-synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), thermogravimetric (TGA) analysis, nitrogen adsorption/desorption isotherms and pore size distribution. When evaluated as anode material for lithium ion batteries, it delivered a high initial discharge capacity of 1150 mAh g⁻¹ and exhibited excellent rate performance at different current densities.

Keywords: ZnO microspheres/graphene hybrid, anode materials, lithium ion batteries, one-pot hydrothermal.

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).