Experimental Study of Densification Effect on Al 2024 Plasma Electrolytic Oxidation Film

Xinghua Guo, Keqin Du*, Quanzhong Guo, Yong Wang, Chuan Wang, Fuhui Wang

Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, Shenyang, China, 110000
E-mail: kqdu@imr.ac.cn

doi: 10.20964/2016.09.48

Received: 6 June 2016 / Accepted: 12 July 2016 / Published: 7 August 2016

This paper explored the densification effect on the plasma electrolytic oxidation (PEO) film coated on Al substrate under the transient self-feedback control mode. Film compactness and microstructure uniformity were carried out by different surface analysis and testing instruments. The results showed that the high-frequency carrier waveform kept a reasonable control on plasma discharge intensity during different stages, inhibited concentrated plasma discharge, prevented the mullite formation, promoted $\gamma \rightarrow \alpha$ Al$_2$O$_3$ phase transition sufficiently, and refined the α-Al$_2$O$_3$ grain distribution. These advantages basically stop the crack and defect generation and improve obviously the PEO film compactness and microstructure uniformity.

Keywords: Ceramics; Arc discharges; X-ray diffraction topography; Phase transitions

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).