Short Communication

Nano Iron Oxides/Sisal Fiber Carbons Composites as Anode Materials for Lithium-ion Batteries

Rui Du 1,2, Zhangfa Tong 1, Chun Wei 1,2, Aimiao Qin 2,3*, Kaiyou Zhang 2, Lei Liao 2

1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530001, PR China
2 Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guilin University of Technology, Guilin 541004, PR China.
3 Guangxi Experiment Center of Information Science, Guilin 541004, Guangxi, PR China
*E-mail: 317881264@qq.com

doi: 10.20964/2016.10.24

Received: 8 July 2016 / Accepted: 13 August 2016 / Published: 6 September 2016

A new microporous carbon was obtained by pyrolysis of sisal fibers. And nano iron oxides/sisal fiber carbons composites were synthesized by hydrothermal method. The structure of the compositets were characterized by XRD and SEM, and the influence of hydrothermal temperature on the electrochemical performance of the composites was studied by cyclic voltammetry and constant current charge and discharge tests. The results show that the structure of nano iron oxides varied with hydrothermal temperatures. As anode materials for lithium-ion batteries, the composites showed a wonderful synergistic effect on the electrochemical performance, and the composites prepared at 120 °C consisted of α-FeOOH and α-Fe 2 O 3 mixture phases and exhibited the highest reversible specific capacity and the best cycling stability.

Keywords: Iron oxides, sisal fiber carbons, composites, hydrothermal, anode materials

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).