Morphology, Thermal and Impedance Characteristics of Iodine Doped Metal Iodide-Epoxidized Natural Rubber (MI-ENR) Polymer Electrolytes

W.L.Tan* , M. Abu Bakar

School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
*E-mail: weileng728@gmail.com; weileng_tan@usm.my

doi: 10.20964/2016.10.33

Received: 7 June 2016 / Accepted: 29 July 2016 / Published: 6 September 2016

A series of metal iodide-epoxidized natural rubber (MI-ENR) (where M= Li, Na, K or Ag) and their iodine (I₂) doped derivative (I₂/MI-ENR) polymer electrolytes (PEs) were successfully prepared via solvent casting method. The PEs were characterized using UV-vis, FTIR and SEM/X-mapping techniques. Their thermal properties were studied using DSC and TG analysis while the ionic conductivity characteristic was evaluated using the impedance spectroscopy. The glass transition temperature (T_g) and impedance characteristics of the MI-ENR PEs is dependent on the solubility of MI salt in the ENR, the interaction of MI with ENR and the outcome morphology of the PE. The alkali metal iodides, MI (M= Li, Na or K) do not affect the thermal stability of ENR in the respective PEs. However, the AgI destabilized the ENR in the AgI-ENR PE. Doping the MI-ENR PEs with I₂, caused increment in T_g, enhancement in thermal stability and changed the conduction mechanism.

Keywords: ENR, iodine, polymer electrolyte, metal iodide, thermal, impedance

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).