Synthesis and Electrocatalytic Properties of La\textsubscript{1-x}Sr\textsubscript{x}CoO\textsubscript{3} (0 \leq x \leq 0.8) Film Electrodes for Oxygen Evolution in Alkaline Solutions

g\textit{Manish Kumar Yadav, Ritu Yadav, Priya Sharma and N. K. Singh}*

Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow-226007 INDIA

*E-mail: nksbhu@yahoo.com, singh_narendra@lkouniv.ac.in

doi: 10.20964/2016.10.01

\textit{Received:} 9 June 2016 / \textit{Accepted:} 22 July 2016 / \textit{Published:} 6 September 2016

Perovskite-type oxides of lanthanum and cobalt with composition La\textsubscript{1-x}Sr\textsubscript{x}CoO\textsubscript{3} (x = 0.0, 0.2, 0.4, 0.6 and 0.8) have been prepared by a low temperature sol-gel route. Electrodes of the material were formed on pretreated Ni-support by oxide slurry painting technique and studied their electrochemical behavior with regards to oxygen evolution reaction (OER) in aqueous KOH solution. The electrochemical characterization was done in three electrode single compartment glass cell using Gamry (Reference 600) Electrochemical Work Station. Techniques used for electrochemical studies were cyclic voltammetry and Tafel polarization. The data showed that the substitution of Sr (0.2 - 0.8 mol) increased the electrocatalytic activity of the oxide. The value was found to be highest with 0.8 mol Sr. The Tafel slopes and reaction order with respect to OH- concentration for oxygen evolution reaction were found to be 65-77 mVdecade-1 and unity, respectively. The cyclic voltammogram recorded between 0.0 – 0.7 V in 1M KOH at 25\textdegree{}C exhibited a pair of redox peaks prior to oxygen evolution reaction. The thermodynamic parameters for oxygen evolution reaction such as, standard electrochemical enthalpy of activation (\textit{\Delta H}_{el}^\text{\#}), standard enthalpy of activation (\textit{\Delta H}^\text{\#}), and standard entropy of activation (\textit{\Delta S}^\text{\#}) have also been calculated by recording the Tafel polarization curve in 1 M KOH at different temperatures. Oxide samples were characterized physicochemically by scanning electron microscope (SEM) powder X-ray diffraction (XRD) techniques.

\textbf{Keywords:} Perovskite-type oxide, sol-gel, XRD, Electrocatalysis, Thermodynamic parameters

© 2016 The Authors. Published by ESG (\texttt{www.electrochemsci.org}). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).