Short Communication

Investigation of C-Glycosidic Ketone as a Corrosion Inhibitor for Carbon Steel in 3.5% NaCl Saturated Ca(OH)\textsubscript{2} Solution

Jianzhong Liu1, Dan Zhao1,*, Jingshun Cai1, Liang Shi1, Jiaping Liu2

1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing 211103 (P. R. China)
2 Jiangsu Key Laboratory of Construction Materials, College of Materials Science and Engineering, Southeast University, Nanjing 211189 (P. R. China)
*E-mail: zhaodan@cnjsjk.cn

doi: 10.20964/2016.10.15

Received: 9 June 2016 / Accepted: 29 July 2016 / Published: 6 September 2016

In this study, a polyhydroxy C-glycosidic ketone (CGK) was synthesized under mild reaction conditions and its activity towards carbon steel in 3.5% NaCl saturated Ca(OH)\textsubscript{2} solution was investigated. Concentration and time dependence of the inhibition effectiveness was acquired by potentiodynamic polarization, electrochemical impedance spectroscopy and cyclic voltammetry. The inhibitor exhibited excellent chemical stability and inhibition efficiency in strong alkaline solution containing high concentration of chloride even after a long exposure time. Results indicated that the CGK acted as a cathodic inhibitor by both physical and chemical adsorption on the steel surface according to the Langmuir adsorption isotherm. The effect of inhibitor addition on the threshold chloride concentration was also assessed, and the CGK could delay corrosion initiation significantly. For further confirming the results obtained from electrochemical measurements, surface morphological observation and analysis were performed using scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction.

Keywords: carbon steel; corrosion inhibitor; simulated concrete pore solution; polyhydroxy derivatives

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).