Facile Preparation of 1D α-MnO$_2$ as Anode Materials for Li-ion Batteries

Hongdong Liu1, Zhongli Hu1, Yongyao Su1, Rong Hu1, Liangliang Tian1, Lei Zhang2,*, Haibo Ruan1,*

1 Research institute for new materials technology, Chongqing university of arts and sciences, Chongqing 402160, PR China
2 College of life science, Chongqing normal university, Chongqing 401331, PR China
*E-mail: leizhang0215@126.com, rhbcqu@aliyun.com
doi: 10.20964/2016.11.61

Received: 15 July 2016 / Accepted: 13 September 2016 / Published: 10 October 2016

Manganese dioxide (MnO$_2$) has been studied as an anode material for Li-ion batteries beyond its high theoretical specific capacity and low-cost. In this work, the 1D α-MnO$_2$ nanomaterials with different morphology were synthesized via a facile and green hydrothermal method. These materials are carefully investigated by XRD, Raman, SEM and BET techniques. The results show that the solution acidity strongly influenced the morphology and the specific surface area of the sample. The electrochemical behaviors of MnO$_2$ sample were systematically investigated by cyclic voltammetry and galvanostatic charge-discharge. As anode materials for Li-ion batteries, both of 1.2-MnO$_2$ and 3.6-MnO$_2$ deliver high initial discharge capacity and relatively excellent cycle performance, indicating that 1D α-MnO$_2$ is a promising anode material for high-performance lithium ion batteries.

Keywords: α-MnO$_2$, solution acidity, Li-ion batteries, electrochemical performance

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).