High Specific Surface Area Activated Carbon with Well-Balanced Micro/Mesoporosity for Ultrahigh Supercapacitive Performance

Bo Hou, Tong Zhang, Rongwei Yan, De Li, Yan Mo, Lihong Yin, Yong Chen

State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 570228 Haikou, China

E-mail: ychen2002@163.com

doi: 10.20964/2016.11.01

Received: 15 July 2016 / Accepted: 10 September 2016 / Published: 10 October 2016

High specific surface area activated carbon derived from coconut shell was prepared using low-temperature carbonization followed by KOH activation method. The resulting activated carbon exhibited excellent supercapacitance performance with an obtained specific capacitance of 325 F g\(^{-1}\) at 0.1 A g\(^{-1}\). Moreover, the supercapacitor electrodes retained 71% of the initial capacitance at elevated current densities of 100 A g\(^{-1}\) and 89% after 10000 cycles when tested in 6 M KOH aqueous solution. Also, the equivalent series resistance of the system was recorded to be only 0.36 Ω. Meanwhile, testing of the supercapacitor electrodes in ionic liquid based-electrolyte delivered substantial specific capacitance of 198 F g\(^{-1}\) and an ultrahigh power density of 74.2 kW kg\(^{-1}\).

Keywords: Coconut shell; Supercapacitors; Pore size distribution; Power density