Fabrication of a Novel Nickel-Curcumin/Graphene Oxide Nanocomposites for Superior Electrocatalytic Activity toward the Detection of Toxic p-nitrophenol

Sasikumar Ragu¹, Shen-Ming Chen¹,* , Palraj Ranganathan², Syang-Peng Rwei²

¹Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
²Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
*E-mail: smchen78@ms15.hinet.net

doi: 10.20964/2016.11.09

Received: 23 July 2016 / Accepted: 29 August 2016 / Published: 10 October 2016

The current study deals with the sensitive electrochemical sensor for ecologically harmful p-Nitrophenol (pNP) based on a glassy carbon electrode which was modified by nickel-curcumin [Ni(Curc)₂]/graphene oxide [GO]. The physicochemical properties of the as-prepared nanocomposites were characterized using a different analytical and spectroscopic method, which include UV-Vis spectrophotometer, fourier-transform infra-red spectrophotometer, field emission scanning electron microscopy and cyclic voltammetry. The reduction of pNP at modified GCE revealed linear range 0.49-760 μM, limit of detection 0.016 μM and high sensitivity 0.671μA μM⁻¹ cm². The recommended sensor was well developed and established the influence of low cost, easily prepare, which is greater to newly reported modified electrodes, thereby permissive practical industrial applications.

Keywords: Electrochemical, Curcumin, p-nitrophenol, Graphene Oxide, Nickel nitrate, Cyclic voltammetry, Sensor

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).