Short Communication

Structural and Electronic Properties of Cation Doping on the Spinel LiMn$_2$O$_4$: a First-Principles Theory

Xing-hua Liang1,*, Mei-hong Huang1, Yu-chao Zhao1, Yu-jiang Wang2, Fa-wei Tang3

1 Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China.
2 College of Mechanical Engineering, Guangxi University, Nanning 530004, China.
3 College of Material Science and Engineering, Beijing university of Technology, Beijing 100124, China
*E-mail: LXH304@aliyun.com

doi: 10.20964/2016.11.59

Received: 23 February 2016 / Accepted: 23 Marcy 2016 / Published: 10 October 2016

The structural and electronic properties of cation doping on the spinel LiMn$_2$O$_4$ were investigated by the first-principles theory. The calculated results indicate that due to the formation energy of LiAl$_{0.5}$Mn$_{1.5}$O$_4$ is the smallest, the structure of LiAl$_{0.5}$Mn$_{1.5}$O$_4$ may be the most stable material, so the cycle performance may be the best. Both Cr-O and Sr-O bonds are longer than Co-O and Al-O bonds, thereby the cycle performance of LiAl$_{0.5}$Mn$_{1.5}$O$_4$ and LiCo$_{0.5}$Mn$_{1.5}$O$_4$ may be better. For LiCr$_{0.5}$Mn$_{1.5}$O$_4$ and LiSr$_{0.5}$Mn$_{1.5}$O$_4$, the charge density among Sr, Cr, Mn and O atoms decreases, so the partial charge from Sr, Cr, Mn and O atoms is centralized near Li-site atoms, which is beneficial to the transition of lithium. Therefore the electronic conductivity of LiCr$_{0.5}$Mn$_{1.5}$O$_4$ and LiSr$_{0.5}$Mn$_{1.5}$O$_4$ is improved. For LiAl$_{0.5}$Mn$_{1.5}$O$_4$ and LiCo$_{0.5}$Mn$_{1.5}$O$_4$, the charge overlap around Mn, Ni and O atoms significantly increased, the charge of Co, Al, Mn and O atoms formed Co-O, Al-O and Mn-O stable bonds, therefore LiAl$_{0.5}$Mn$_{1.5}$O$_4$ and LiCo$_{0.5}$Mn$_{1.5}$O$_4$ structural stability is dramatically increased and may behave better electronic properties and more capacity.

Keywords: spinel LiMn$_2$O$_4$, first-principles, formation energy, charge density

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).