Short Communication

Graphene-Supported Silver Nanoparticles with High Activities toward Chemical Catalytic Reduction of Methylene Blue and Electrocatalytic Oxidation of Hydrazine

Chengen He1, Zixiu Liu1, Yun Lu1, Leping Huang2,*, and Yingkui Yang1,*

1 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
2 School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
*E-mail: lphuang@wtu.edu.cn, ykyang@hubu.edu.cn

doi: 10.20964/2016.11.72

Received: 27 June 2016 / Accepted: 7 September 2016 / Published: 10 October 2016

Reduced graphene oxide (RGO)/silver nanoparticle (Ag NP) composites (Ag/RGO) were prepared by a two-step route that involves chelating Ag NPs onto GO in the presence of N, N-dimethylformamide, followed by reduction with sodium borohydride. Ag NPs with an average diameter of 5.6 nm were found to be uniformly distributed on the surface of RGO sheets, and the resulting Ag/RGO composite exhibits good chemical catalytic behavior toward reduction of methylene blue and high electrocatalytic activity toward electrooxidation of hydrazine.

Keywords: Reduced graphene oxide, silver nanoparticles, chemical catalysis, electrocatalysis.

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).