Metal-organic Frameworks Derived CoS$_2$-Co/N-doped Porous Carbon with Extremely High Electrocatalytic Stability for the Oxygen Reduction Reaction

Xin Gu1, Ying Wang1, Liting Yan1, Liangjun Li1, Pengcheng Dai1,*, Hongbo Wang2,*, Xuebo Zhao1,3,*

1 Institute of Unconventional Petroleum and Renewable Energy, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
2 Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056, P. R. China.
3 State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China.

E-mail: dpcapple@upc.edu.cn, hongbo.wang@csu.edu.cn, zhaoxuebo@upc.edu.cn

doi: 10.20964/2016.11.39

Received: 13 August 2016 / Accepted: 9 September 2016 / Published: 10 October 2016

The electrocatalytic performances for the oxygen reduction reaction (ORR) highly depend on the structure and composition of catalysts. In this work, a novel non-precious metal catalyst (CoS$_2$-Co/N-doped porous carbon) has been fabricated by the carbonization of metal-organic frameworks (MOFs) with a consequent sulfuration process. The resultant nanocomposite exhibits highly desirable structure features for ORR, such as high-efficient Co-N-C active sites, porous carbon nanostructures for rapid mass transfer, and CoS$_2$ protective layers that prevent Co-N-C active sites from deactivation. As a result, the rationally designed catalyst shows extremely high electrocatalytic stability with a high current retention of ~ 98% after 10 h in alkaline media.

Keywords: Oxygen reduction reaction; Nanocomposites; Metal-organic frameworks; Electrocatalysis.

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).