Investigation of CA/G/MnO$_2$ Electrode Composite for Supercapacitors

Liquan Lu1,*, Shengming Xu2, Junwei An2

1 School of Mechatronics Engineering, North University of China, Taiyuan 030051, China
2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

*E-mail: lq_lu@buaa.edu.cn

doi: 10.20964/2016.11.49

Received: 12 August 2016 / Accepted: 22 September 2016 / Published: 10 October 2016

In this paper, we have successfully synthesized a cellulose acetate/graphene/MnO$_2$ (CA/G/MnO$_2$) composite, which is further employed as an electrode material for supercapacitors. This novel composite material can fully utilize the conductivity of the graphene and the dense internal structure of the cellulose acetate (CA) to increase the specific capacitance of the MnO$_2$. At the current density of 0.1 A/g, the specific capacitance of the CA/G/MnO$_2$ composite is 1181 F/g, which is very close to the theoretical capacitance. Moreover, the capacitance of the CA/G/MnO$_2$ composite finally stabilizes at 93 F/g, after 5000 cycle charge and discharge test under the high current density of 30 A/g. Its capacitance retention rate is 67.4%, which is great higher that the capacitance retention rate of the MnO$_2$ (44.2%). These results fully indicate that the CA/G/MnO$_2$ composite has broad application prospects in the field of super capacitor electrode materials.

Keywords: Supercapacitors; Cellulose acetate; Graphene; Electrode materials

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).