Short Communication

Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings as Electrochemical Biosensor for Dopamine Detection

Xiaonan Liu1,3, Fanghua Zhu2, Wei Wang3, Jiehong Lei4, Guangfu Yin1,*

1 College of Materials Science and Engineering, Sichuan University, Sichuan 610064, P. R. China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
3 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
4 College of Physics and Space Science, China West Normal University, Nanchong 637009, China.

*E-mail: nic0700@scu.edu.cn

doi: 10.20964/2016.11.62

Received: 13 August 2016 / Accepted: 17 September 2016 / Published: 10 October 2016

In this paper, uniform iron oxide magnetic nanorings (Fe$_3$O$_4$ NRs) were successfully synthesized through hydrothermal method. The electrochemical performance of Fe$_3$O$_4$ NRs/glassy carbon electrode (GCE) based biosensor for dopamine (DA) detection has been investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These results implied the Fe$_3$O$_4$ NRs/GCE biosensor exhibited superior electrocatalytic activity and significant electron transfer kinetics for the electrooxidation of DA with a quick response time of 4 s and a low detection limit of 10 nM. These excellent electrochemical results indicate the Fe$_3$O$_4$ NRs could be utilized as an extremely promising material for the detection of DA related diseases in biomedical analysis.

Keywords: Fe$_3$O$_4$ nanorings, dopamine, electrooxidation, cyclic voltammetry

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).