NiCoP Nanoparticles as Efficient Electrocatalyst for Oxygen Evolution Reaction in an Alkaline Solution

Yuhao Li*, Yanping Tian, Yuhua Yan, Haizhou Chang, Ruizhuo Ouyang and Yuqing Miao*

University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
*E-mail: yhli@usst.edu.cn, yqmiao@usst.edu.cn

doi: 10.20964/2016.12.21

Received: 19 August 2016 / Accepted: 26 September 2016 / Published: 10 November 2016

Water splitting can acquire clean energy. To enhance the water splitting ability, electrocatalysts qualify high catalytic ability and low cost are need to be explored. Herein, a bimetal phosphide (NiCoP) nanomaterial is reported as an efficient electrocatalyst for water oxidation. The ternary nickel cobalt phosphide nanoparticles were synthesized from the solution-phase reaction of organic Co and Ni precursors with trioctylphosphine. The nanoparticle size is 18 ± 5 nm. After annealing, the catalytic ability of NiCoP is significantly enhanced. The overpotential decreased from 480 to 330 mV vs RHE at 10 mA cm\(^{-2}\) in 1 mol dm\(^{-3}\) KOH alkaline solution. When hydrophilic carbon nanotubes (CNTs) mixed with the NiCoP to form hybrid NiCoP-CNTs, the overpotential further decreased from 330 to 320 mV vs RHE at 10 mA cm\(^{-2}\). The Tafel slopes of ca. 69 and 52 mV are found for annealed NiCoP and NiCoP-CNTs, respectively. The stability test of NiCoP-CNTs also shown the remarkable catalytic activity for long-term operation.

Keywords: NiCoP, bimetal phosphide, electrocatalyst, water oxidation

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).