Corrosion Behavior of Electroless Ni-P/Ni-B Coating on Magnesium Alloy AZ91D in NaCl Environment

Jun Zhang¹, Zhengwei Song²*, Gang Yu¹*, Bonian Hu³, Xueyuan Zhang¹

¹State Key Laboratory of Chemo/Biosensing and Chemo metrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
²Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030024, PR China
³Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, PR China
*E-mail: adsszw@163.com, yuganghnu@163.com

doi: 10.20964/2016.12.57

Received: 27 August 2016 / Accepted: 13 October 2016 / Published: 10 November 2016

The Ni-P/Ni-B coating was deposited on AZ91D magnesium alloy by electroless plating. Ni-P coating as inner layer and Ni-B coating as outer layer. A tight and compact Ni-P/Ni-B coating on Mg alloy substrate was formed via Ni-P plating for 70 min and Ni-B plating for 20 min. The corrosion behavior of coating was studied by electrochemical test and neutral salt spray test in the presence of chloride environment. The test results shown that the double coating has better corrosion resistance than single Ni-P or Ni-B coating. Ni-B plated outer layer functions as cathodic protective and sealing layer, assisting Ni-P coatings in obstructing the attack of Cl⁻ in the stage of long-term immersion in NaCl solution.

Keywords: Electroless Ni-P; Electroless Ni-B; Corrosion; Mg alloy; EIS

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).