Electrochemical Performance of Li$_{0.995}$Al$_{0.005}$Mn$_{0.85}$Fe$_{0.15}$PO$_4$/C as a Cathode Material for Lithium-Ion Batteries

Yun-Fei Long$^{1, 2}$, Qiao-Ying Huang1, Zhi Wu1, Jing Su$^{1, 2}$, Xiao-Yan Lv3, Yan-Xuan Wen$^{1, 2, *}$

1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
2 Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, Nanning 530004, PR China
3 The New Rural Development Research Institute, Guangxi University, Nanning 530004, PR China
*E-mail: wenyanxuan@vip.163.com

Received: 28 August 2016 / Accepted: 1 October 2016 / Published: 10 November 2016

A solid-state reaction route was used to prepare Li$_{0.995}$Al$_{0.005}$Mn$_{0.85}$Fe$_{0.15}$PO$_4$/C, and the prepared sample were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrochemical tests. The results of XRD and XPS show that Al$^{3+}$ and Fe$^{2+}$ are soluble in the Li site and the Mn site to generate a solid-solution, resulting in a shrinkage of crystal lattice and creations of Al$^{3+}$-vacancy pairs and Fe$^{2+}$-vacancy pairs. Compared with Li$_{0.995}$Al$_{0.005}$MnPO$_4$/C, LiMn$_{0.85}$Fe$_{0.15}$PO$_4$/C and LiMnPO$_4$/C, Li$_{0.995}$Al$_{0.005}$Mn$_{0.85}$Fe$_{0.15}$PO$_4$/C exhibits much better rate capability and cycling stability. When charged and discharged at 1 C, Li$_{0.995}$Al$_{0.005}$Mn$_{0.85}$Fe$_{0.15}$PO$_4$/C delivers a discharge capacity of 139 and 160 mAh·g$^{-1}$ at 25 and 60 °C, and its capacity retention ratio is 100 % after 50 cycles, respectively. The enhanced property of LiMnPO$_4$/C can be attributed to the synergistic effect of Al$^{3+}$ doping at the Li site and Fe$^{2+}$ doping at the Mn site, leading to a great improvement in the dynamic stability of the olivine structure, Li$^+$ diffusion and electrode kinetics. Thus, the electrochemical properties of lithium manganese phosphate can be effectively improved by Fe$^{2+}$ doping at the Mn site and aliovalent ion doping at the Li site.

Keywords: Lithium ion batteries; Cathode; Lithium manganese phosphate; Cation substitution

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).