Effect of Hydrogen on Cavitation Erosion Behaviour of High Strength Steel

Y. X. Qiao¹,*, X. Cai¹, C. Ouyang¹,*, Y. G. Zheng²

¹Jiangsu University of Science and Technology, 212003, Jiangsu, P. R. China
²Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, P.R.China
*E-mail: yxqiao@imr.ac.cn, oyc1014@163.com

doi: 10.20964/2016.12.34

Received: 6 July 2016 / Accepted: 30 September 2016 / Published: 10 November 2016

The cavitation erosion behaviors of high strength steel electrochemically charged with hydrogen in distilled water and 3.5% NaCl solution were investigated. The results showed the surface hardness of the steel increased by electrochemical hydrogen-charging but no noticeable effect on the \(E_{corr} \) under condition of quiescence and cavitation respectively. Under condition of cavitation the corrosion rate was enhanced, especially for specimen electrochemically charged with hydrogen at 50 mA·cm\(^{-2}\) for 12 hours. The mass loss increased with the increasing of current density of electrochemical hydrogen-charging. The corrosion induced by erosion played an important role in the synergistic effect under condition of cavitation and electrochemistry was confirmed that hydrogen embrittlement had a great influence on cavitation erosion of high strength steel.

Keywords: A. Low alloy steel, B. Erosion, C. Hydrogen embrittlement, D. Hardening

FULL TEXT

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).