Effects of Graphene/Silver Nanocomposite on the Microstructure of Amorphous Mg–based Hydride

College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
*E-mail: newboy66@126.com, yanxin_2008@126.com, tang@qdu.edu.cn

doi: 10.20964/2016.12.10

Received: 7 July 2016 / Accepted: 22 September 2016 / Published: 10 November 2016

The influence of a graphene/silver (G/A) nanocomposite coating layer on the microstructural evolution and surface oxidation of a Mg–Ni–La hydride is investigated systematically by XRD, SEM, EDS and HRTEM in detail. SEM and EDS reveal that the existence of the G/A composite prevents the electrode from pulverizing and oxidizing. The oxygen content in the surface of the electrode is reduced from 21.26% to 9.83% after 50 cycles for a Mg-Ni-La electrode with 0.2 mass fraction of G/A. HRTEM shows that the amorphous electrodes with no G/A coating are almost all crystallized, and that the stable Mg$_2$NiH$_4$, α-Mg, MgH$_2$ and LaH$_2$ phases are present with grain sizes as large as 100-120 nm after 50 cycles of charging/discharging. The G/A coating reduces the corrosion and oxidation of the electrode alloy and provides both a pathway for hydrogen diffusion and active sites for the redox reaction of hydrogen. All these factors generate a significant enhancement of the discharge capacity by about 250 mAh$^{-1}$ in each cycle (after activation) for Mg-Ni-La electrodes with 0.2 G/A nanocomposites.

Keywords: electrode alloy; graphene coating; electrochemical property; surface modification.