Effects of Nano-Sized PbO on the Transport Critical Current Density and Flux Activation Energy of YBa$_2$Cu$_3$O$_{7-\delta}$ Superconductor

Annas Al-Sharabi1, Sarah Yasmin Tajuddin2, Au Diya Fatihah Wan Saffiey2, Syazana Jasman2, H.A. Alwi2, M.H. Hj Jumali2, R. Abd-Shukor2,*

1 Department of Physics, Faculty of Applied Sciences, Thamar University, Thamar, Republic of Yemen
2 School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*E-mail: ras@ukm.edu.my

doi: 1020964/2017.01.09

Received: 27 September 2016 / Accepted: 11 November 2016 / Published: 12 December 2016

The effects of nano-sized PbO (10-30 nm) addition on the critical temperature, transport critical current density (J_c) and flux activation energy of YBa$_2$Cu$_3$O$_{7-\delta}$ (PbO)$_x$ ($x = 0.00$-0.45 wt.%), prepared by the standard solid-state reaction method were studied. Powder X-ray diffraction method, electrical resistance measurements and scanning electron microscopy have been used to study the samples. The transport critical current density, J_c was measured using the four-point probe method. The flux activation energy, U was calculated from the resistivity versus temperature measurements using the Arrhenius-type equation. The highest superconducting onset temperature $T_{c \text{ onset}}$ was observed in the sample with $x = 0.35$ wt. % (94 K). The $x = 0.25$ wt. % sample showed the highest J_c. The activation energy ($U = 0.90$ eV) in zero fields showed a maximal plateau between $x = 0.20$ and 0.35 wt. %. Enhancement of J_c was explained as the increase in the activation energy as a result of nano-sized PbO addition.

Keywords: Activation energy; current density; microstructure; transition temperature

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).