Electrochemical Determination of Adrenaline Using Voltammetric Sensor Employing NiO/CNTs Based Carbon Paste Electrode

Vinod Kumar Gupta¹*, Hamide Mahmoody², Fatemeh Karimi³*, Shilpi Agarwal¹, Maryam Abbasghorbani⁴,

¹Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
²National Iranian Copper Industries Company (NICICO), Kerman, Iran
³Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran
⁴Gas Division, Research Institute of Petroleum Industry, P.O. Box 14665-137, Tehran, Iran
*E-mail: vinodfcy@gmail.com, fkm024@gmail.com

doi: 10.20964/2017.01.69

Received: 8 November 2016 / Accepted: 30 November 2016 / Published: 12 December 2016

In the presence study we tried for synthesis of NiO/CNTs nanocomposite and application of synthesized nanocomposite for fabrication of NiO/CNTs nanocomposite modified carbon paste electrode (CPE/NiO/CNTs) as highly square wave voltammetric sensors for determination of adrenaline. The NiO/CNTs was characterized with transmission electron microscopy (TEM) and x-ray powder diffraction (XRD) methods. The electro-oxidation signal of adrenaline showed an irreversible response at 0.3 V. The oxidation current of adrenaline improved ~2.0 times compared to carbon paste electrode. At the best electrochemical conditions, the voltammetric oxidation signal of adrenaline showed linear dynamic ranges (0.08-900.0 μM) with a detection limit of 0.01 μM. The CPE/NiO/CNTs has been found highly selective tool for the detection of adrenaline in ampule and urine samples.

Keywords: NiO/CNTs nanocomposite, Modified electrode, Adrenaline, Voltammetric determination

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).