Non-Cracked Epoxy Nanogel Composite as Anticorrosive Coatings for Aggressive Marine Environment

Mohamed H. Wahby1, Ayman M. Atta1,2,3*, Hamad A. Al-Lohedan2, Ashraf M. El-saeed2, Ahmed M. Tawfik4

1 Department of Chemistry, Surfactant Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
2 surfactants research chair, Department of Chemistry, Surfactant Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
3Petroleum application department, Egyptian petroleum research institute, Nasr city 11727, Cairo, Egypt.
4 College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

*E-mail: khaled_00atta@yahoo.com

doi: 10.20964/2017.01.33

Received: 7 October 2016 / Accepted: 8 November 2016 / Published: 12 December 2016

Cured epoxy coating crack is one of the drawbacks that can be solved by using self-healing preembedded nanomaterials to be an advanced prospective approach. In this work sodium montmorillonite modified with crosslinked nanogels based on smart sensitive N-isopropyl acrylamide (NIPAm) copolymers with nonionic monomer as N-vinyl pyrrolidone (VP) and ionic monomer of 2-acrylamido-2-methyl propane sulfonate sodium salt (AMPS-Na). The particle size, morphology, zeta potential, thermal stability and surface activity of Na-MMT nanogel in distilled and sea water were determined. The blending of Na-MMT nanogels with epoxy during the curing and their effects on exfoliation of Na-MMT and morphology were investigated. The corrosion inhibition efficiency of the cured epoxy embedded with Na-MMT nanogel as organic coats for steel was studied using salt spray resistance up to 1000 h.

Keywords: Embedded epoxy, Coatings, Salt spray, corrosion inhibition, steel.

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).