The Effect of Electrolyte Temperature on the Electrodeposition of Cuprous Oxide Films

Yuan-Gee Lee¹, Jee-Ray Wang¹, Miao-Ju Chuang¹ *, Der-Wei Chen², Kung-Hsu Hou² *

¹ Department of Automation Engineering and Institute of Mechatronoptic Systems, Changhua, Taiwan
² Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan
*E-mail: mjchuang@ctu.edu.tw, khou@ndu.edu.tw, khoucloud@gmail.com

doi: 10.20964/2017.01.19

Received: 10 September 2016 / Accepted: 19 November 2016 / Published: 12 December 2016

Cuprous oxide (Cu₂O) thin films were deposited on indium tin oxide (ITO) coated glass by electrochemical deposition at different electrolyte temperature. The electrodeposition process was found to be a reductive irreversible process with a major phase, Cu₂O, and appreciable amount of CuO. With the increasing temperature, the microstructure varied from fine grains, amorphous-like, to coarse pyramids, well-crystallized, which were identified as the texture development transforming from (200) to (111). Not only was the increasing temperature of electrodeposition found to induce the optical red-shift of band gap from 2.19 to 2.68 eV but it inhabited electrical transmittance with resistivity from 11.28 to 0.24 Ω-cm.

Keywords: electrodeposition, irreversible, phase transformation, band gap, and resistivity

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).