The Electrochemical Redox Mechanism and Antioxidant Activity of Oleanolic Acid Based on Multi-walled Carbon Nanotuber Screen-printing Electrode

Hongqiao Yang¹,², Xiaoyan Ma¹,², Huabin xiong¹,², Jinting Gao¹,², Xiaofen Li¹,², Yuntao Gao¹,²,*, Qian Zhang

¹ The Engineering Laboratory of Polylactic Acid-Based Functional Materials of Yunnan, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China.
² Key Laboratory of Comprehensive Utilization of Mineral Resource in Ethnic Regions, Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500, P. R. China.
*E-mail: ymz409@163.com

doi: 10.20964/2017.01.17

Received: 8 August 2016 / Accepted: 4 November 2016 / Published: 12 December 2016

This article emphasis on the application of the multi-walled carbon nanotubes screen printing electrodes(MWCNTs/SPEs) to reseach of plant active constituent (oleanolic acid, OA) by electrochemistry analytic procedure. The work explores the optimization of reaction conditions of OA. The stoichiometric ratio of OA on DPPH about 1:1, electrochemical redox mechanism and antioxidant activity of OA were obtained by the determination of electrochemical kinetics parameters such as electron transfer numbers \((n)\), protons \((m)\), electron charge coefficient \((\alpha)\), and standard electron transfer rate constant \((k)\) are 1, 1, 0.66, 0.53 respectively based on electrochemical behavior at MWCNTs/SPEs. This method is fast, convenient, low-cost, practicable and can be used to the trace amount determination of the content of triterpenes in natural product.

Keywords: Screen-printed electrodes; Oleanolic acid; Electrochemical redox mechanism; Antioxidant activity;

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).