Effect of Synthesis Procedures on Physical and Electrochemical Properties of Carbon Supported Pt/Ru Nanophase Electrocatalyst for Fuel Cell Applications

Bhajan Lal1,*, Ammarah Kanwal2, Safdar Ali1, Shafiq Ullah4, Amin Badshah3, Ataf Ali Altaf3, Fiaz Ahmed4, Ramsha Raza4

1Faculty of Engineering, Sukkur Institute of Business Administration, Sukkur, 65200, Pakistan
2Glass & Ceramics Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories, Ferozepur Road, Lahore, 54000, Pakistan
3Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad
4National Development Complex, P.O.Box # 2216, Islamabad
*E-mail: bhajan.lal@iba-suk.edu.pk

doi: 10.20964/2017.02.12

Received: 27 September 2016 / Accepted: 23 November 2016 / Published: 30 December 2016

The carbon supported Pt/Ru is found be most commercially used anodic electrocatalyst for direct methanol fuel cell applications however, there are ternary and quaternary metallic based catalyst also available. Here we report in outcome of the synthetic procedures on properties of carbon supported Pt/Ru catalysts. Different electrocatalysts were synthesized by using propylene glycol, ethylene glycol, glycerin, polyvinylpyrrolidone (PVP) ethylene glycol methodology, hydrazine, sodium borohydride, formic acid, sodium formate as reducing agents and electrochemical reduction of metals on carbon supported electrode. The synthesized electrocatalysts were characterized by; powder XRD, electron microscopic techniques like SEM, EDS, and TEM, Brunauer-Emmett-Teller (BET) for surface area analysis, and finally electrochemical discharge testing (EDT) was carried out to examine performance and durability of synthesized electrocatalyst (open circuit and on load voltages, current density and power density). The synthesized catalysts had shown high catalytic activity and CO tolerance in direct methanol fuel cell applications, higher activity is achieved by those electrocatalysts which are synthesized by using weak reducing agents as examined by electrochemical discharge testing methodology.

Keywords: Direct Methanol Fuel Cell, Pt-Ru electrocatalyst, Carbon black, Electrochemical Discharge Testing

FULL TEXT