LiFePO₄/C Composite Prepared by Coal Based Carbon Sources

Tao Wang, Yang Wang, Yina Wu, Le Zhou, Yuan Jin, Wenming Liu, Jie Huang, Xiong Fang, Xincun Tang

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
*E-mail: tangxincun@163.com

doi: 10.20964/2017.02.19

Received: 4 November 2016 / Accepted: 30 November 2016 / Published: 30 December 2016

A novel carbon source which was obtained from coal has been successfully applied to prepare LiFePO₄/C composite for the first time. The LiFePO₄/C composite was characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM), Thermal Gravimetric (TG), Raman spectra and electrochemical techniques. TG curves indicated that the coal had a high carbon-containing (32 wt. %). TEM images showed that the surface of LiFePO₄ was covered with a carbon layer of ~3 nm. The electrochemical performance was greatly improved by coating with coal based carbon source due to the enhanced electronic conductivity. It exhibited high initial capacity of 156.7 mAh/g at 0.1 C-rate and 96.5 mAh/g at 2 C-rate, which were higher than the pure LiFePO₄. The Rₑ of the LiFePO₄/C composite and pure LiFePO₄ were 270 Ω and 450 Ω, respectively. Thus, the approach for the preparation of LiFePO₄/C composite by using coal as carbon source may open new prospects for utilization of coal in lithium ion batteries.

Keywords: Coal, Carbon, LiFePO₄/C composite, Acid treated.

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).