A nano-$\text{Ag}_4\text{Bi}_2\text{O}_5$/graphene oxide (ABO/GO) composite has been synthesized by a co-precipitation method in which the ABO was homogeneously precipitated on the surface of suspended graphene oxide. The structure, morphology, composition, and electrochemical properties have been systematically investigated by XRD, Raman spectroscopy, SEM, EDS and EDX mapping, XPS, and electrochemical measurements. The results showed that ABO had been successfully loaded on GO to form an ABO/GO composite. The obtained ABO/GO hybrid exhibited excellent electrocatalytic performance for the oxygen reduction reaction (ORR). Analytical results obtained with a rotating disk electrode (RDE) showed that the ORR took place via a four-electron pathway on the surface of the ABO/GO electrocatalyst.

Keywords: Co-precipitation method; Nano-$\text{Ag}_4\text{Bi}_2\text{O}_5$/graphene oxide composite; Electrocatalysis; Oxygen reduction

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).