The Electrochemical Behavior of Cr(II) Ions in NaCl-KCl Melt

Wei Liu¹,², Guolong Liu¹,², Saijun Xiao¹,²*, Jun Zhang¹,²

¹School of Metallurgy Engineering, Anhui University of Technology, Maanshan 243000, China
²Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Anhui University of Technology, Maanshan, Anhui, 243002, China
*E-mail: xiaosaijunzj@yahoo.com

doi: 10.20964/2017.02.49

Received: 24 October 2016 / Accepted: 21 December 2016 / Published: 30 December 2016

The cathodic behavior of Cr (II) ions on Pt electrode in molten NaCl-KCl mixture at a temperature of 710 °C (983K) was investigated by cyclic voltammetry, square wave voltammetry, chronopotentiometry, and chronoamperometry. The results indicate the reduction process of Cr (II) to Cr on Pt electrode was one step: \(\text{Cr}^{2+} + 2e^- = \text{Cr} \). Reduction of Cr (II) ions is a quasi-reversible process controlled by diffusion mass transfer, and the reduction product is insoluble. The diffusion coefficient for chromium (II) ions in NaCl-KCl melt calculated by the data of cyclic voltammetry and chronopotentiometry, is \(1.31 \times 10^{-5} \text{ cm}^2 \cdot \text{s}^{-1} \) and \(1.15 \times 10^{-5} \text{ cm}^2 \cdot \text{s}^{-1} \), respectively. The growth process of Cr (II) ions on Pt electrode was instantaneous three-dimensional nucleation. Potentiostatic electrolysis performed on the Pt electrode confirmed the feasibility of electrodepositing metallic chromium in the molten NaCl-KCl-CrCl₂ system.

Keywords: molten salt; chromium; electrochemical behavior; diffusion coefficient; potentiostatic electrolysis

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).