Electrochemical Corrosion Behavior of Fe64/Ni36 and Fe55/Ni45 Alloys in 4.0% Sodium Chloride Solutions

El-Sayed M. Sherif1,2,*, Hany S. Abdo1,3, S. Zein El Abedin2

1Deanship of Scientific Research, Advanced Manufacturing Institute, King Saud University, P. O. Box 800, Al-Riyadh 11421, Saudi Arabia
2Electrochemistry and Corrosion Laboratory, Physical Chemistry Department, National Research Centre, El Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt
3Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, Aswan 81521, Egypt
*E-mail: esherif@ksu.edu.sa

doi: 10.20964/2017.02.58

Received: 30 October 2016 / Accepted: 6 December 2016 / Published: 30 December 2016

The electrochemical corrosion behavior of two iron/nickel alloys namely, Fe64/Ni36 and Fe55/Ni45, in 4.0% NaCl solution was reported. The study was conducted using open-circuit potential, electrochemical impedance spectroscopy, cyclic polarization, and chronoamperometric current-time measurements. The surface of the alloys after 7 days immersion in the solution was investigated by scanning electron microscope and energy dispersive X-ray analyzer. It was found that the corrosion resistance for Fe55/Ni45 alloy was higher than that for Fe64/Ni36 one. This was confirmed by the low corrosion current and corrosion rate as well as the high corrosion resistance for Fe55/Ni45 compared to Fe64/Ni36 alloy. Moreover, the less negative potential and the low absolute current obtained for Fe55/Ni45 alloy by the open-circuit potential and chronoamperometric experiments, respectively.

Keywords: corrosion; iron-nickel alloys; polarization; EIS; chronoamperometry

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).