Efficient Reduction of CO₂ to Formate Using in Situ Prepared Nano-Sized Bi Electrocatalyst

Jingjing Bei¹, Rui Zhang²*, Zhidong Chen¹, Weixin Lv², Wei Wang²*

¹ School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
² School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
*E-mail: zhangrui20128@163.com, wangw@ycit.edu.cn

doi: 10.20964/2017.03.72

Received: 3 January 2017 / Accepted: 31 January 2017 / Published: 12 February 2017

Carbon dioxide (CO₂) can be reduced to valuable chemicals under the suitable cathode potential. During the electrochemical reduction of CO₂, most metal oxide catalysts will be reduced to zero valent metals. In this work, flower-like Bi₂O₃ precursor has been prepared by the method of hydrothermal synthesis, and it has become pure Bi₂O₃ with irregularly shape after calcination at 500 °C for 2 h. The precursor and Bi₂O₃ have been in situ reduced on the glass carbon electrodes separately, then they are used as the electrocatalysts for CO₂ reduction. The faradaic efficiencies for producing formate on the two electrocatalysts are all up to 82% at a low overpotential of 0.89 V. The electrocatalyst reduced from the precursor possesses larger current density for CO₂ reduction than that reduced from Bi₂O₃, and it is believed to be a promising catalyst for further application.

Keywords: Carbon dioxide; Electrochemical reduction; Formate; Metal bismuth; Flower-like