Depassivation–repassivation Behavior of a CoCrMo Alloy under Tribological Contact in Simulated Body Fluids

Xinyi Li¹, Yu Yan¹*, Haijun Zhang², Yanjing Su¹, Lijie Qiao¹

¹Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P.R. China
²Shandong Rientech Medical Tech Co., Ltd., Branden Industrial Park, Qihe Economic & Development Zone, 251100, Qihe, Shandong Province, P.R. China
*E-mail: yanyu@ustb.edu.cn

doi: 10.20964/2017.03.67

Received: 5 January 2017 / Accepted: 30 January 2017 / Published: 12 February 2017

The long term performance of CoCrMo alloys in a tribocorrosive environment relies on the passivation properties of such alloys. The depassivation–repassivation phenomenon of CoCrMo alloy surfaces in a 0.9% NaCl solution, with and without the addition of Bovine Serum Albumin (BSA), was investigated. The relationships between the wear-induced-depassivation rate (D), applied load (F) and stroke frequency (f) were deduced. These can be summarised as

D = 7.57E−6F0.56f in a 0.9% NaCl solution

and

D = 2.31E−6F0.85f in BSA containing solution.

It was found that the ratio of the Cr element in the outer layer of the passive film was lower after depassivation. The passive film formed initially has better stability, which results in a lower depassivation rate in the initial few cycles compared with later cycles (relatively stable) in 0.9% NaCl solution. The adsorption of BSA and the effects of mechanical wear result in a higher depassivation rate in the initial a couple of cycles in BSA containing 0.9% NaCl solution.

Keywords: tribocorrosion; depassivation; repassivation

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).