Electrochemical Determination of Sulfonamide Based on Glassy Carbon Electrode Modified by Fe$_3$O$_4$/Functionalized Graphene

Baoshan He*, Sasa Yan

School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
*E-mail: hebaoshan@126.com

doi: 10.20964/2017.04.56

Received: 22 January 2017 / Accepted: 28 February 2017 / Published: 12 March 2017

A novel strategy for the sensitive determination of sulfonamide using glassy carbon electrode(GCE) modified by Fe$_3$O$_4$/functionalized Graphene (Gr/Fe$_3$O$_4$) was successfully developed in this work. The fabricated Gr/Fe$_3$O$_4$/GCE sensor demonstrated remarkable merits such as higher electrocatalytic activity, higher sensitivity and lower detection limit. Under optimized conditions, the modified electrode achieved a linear range of $5 \times 10^{-7} \sim 1.1 \times 10^{-4}$ mol/L with a detection limit of 5.0×10^{-8} mol/L. The calibration curve could be expressed by the equation $i_{pa}(10^{-6} A)=1.356 \times 10^{-4} c \ (10^{-5} \text{ mol/L})+0.898$ with a linear coefficient of 0.994. The recovery rate was in the range of 88.5% ~ 104.0%, indicating the enormous potential and prospects of this method.

Keywords: Electrochemical Determination; Sulfonamide; Graphene; Fe$_3$O$_4$; Glassy carbon electrode

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).