Corrosion Inhibition of Copper and α-Brass in 1 M HNO₃ Solution using New arylpyrimido [5, 4-c] quinoline-2,4-dione derivative

A.S.Fouda¹,*, M.A.Ismael¹, R. M. Abo Shahba², L.A.Kamel², A.A.El-Nagggar¹

¹ Department of Chemistry, Faculty of Science, El-Mansoura University, El-Mansoura- 35516, EGYPT: Fax: +2 050 2202271,
² Department of Chemistry, Faculty of Science (girls branch), El-Azhar University, Cairo, EGYPT
*E-mail: asfouda@hotmail.com
doi: 10.20964/2017.04.57

Received: 11 January 2017 / Accepted: 22 February 2017 / Published: 12 March 2017

The efficiency of 5-(3,4-dimethoxyphenyl)-8,10-dimethoxy-1,3-dimethylpyrimido-[5,4-c]quinoline-2,4-dione(PQD) as corrosion inhibitor for Cu and α-brass in 1 M HNO₃ has been tested by weight loss (WL) and electrochemical techniques such as potentiodynamic polarization (PP), electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The calculated adsorption thermodynamic parameters indicated that the adsorption was a spontaneous, exothermic process accompanied by a decrease in entropy. The protection efficiency (PE) increases with increasing the dose of the tested organic compound in HNO₃ solution and decreases with increasing the temperature. The adsorption of the PQD on the Cu and α-brass surfaces in the acid solution was found to obey Langmuir’s adsorption isotherm. Scanning electron microscope (SEM) results showed the formation of a protective film on the Cu and α-brass surfaces in the presence of PQD. The results obtained from different techniques were in good agreement.

Keywords: Copper, α-Brass, Corrosion inhibition, PQD, HNO₃, EIS, EFM, SEM-EDX

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).