Study on the Initial Atmospheric Corrosion Behavior of Copper in Chloride-Containing Environments

Chenxi Yi¹, Xiaqing Du¹, Yumeng Yang¹, Yu Chen¹,², Guangyuan Wei³, Zhongnian Yang⁴, Zhao Zhang¹,*

¹ Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
² School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
³ School of Earth Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
⁴ Department of Chemical Engineering, Binzhou University, Binzhou, Shandong 256603, China
*E-mail: zhangzhao@zju.edu.cn

doi: 10.20964/2017.05.18

Received: 18 January 2017 / Accepted: 27 February 2017 / Published: 12 April 2017

The initial atmospheric corrosion process of copper (in 1 hour) was investigated by quartz crystal microbalance (QCM), SEM, XRD and AFM techniques. As a kind of electrochemical noise, the QCM data had been analyzed by Fast wavelet transform technique (FFT). The results showed that, both the $Q\sim t$ curves deduced from QCM data and XRD patterns confirmed the initial atmospheric corrosion products of copper is Cu$_2$O, and which corrosion severity increased with both the concentration of NaCl and corrosion time. A new parameter named electrochemical active energy (E_c) was proposed from the FFT analysis of QCM data, which is not only in direct proportion to the corrosion severity (such as weight loss), but can also be used to deduce the corrosion mechanism appropriately.

Keywords: Copper; Electrochemical noise; Fast wavelet transform technique; Atmospheric corrosion

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).