Effect of Sn Loading on the Characteristics of Pt Electrocatalysts Supported on Reduced Graphene Oxide for Application as Direct Ethanol Fuel Cell Anode

Guilherme L. Cordeiro¹,*; Valter Ussui¹; Nildemar A. Messias¹; Ricardo M. Piasentin²; Nelson B. de Lima¹; Almir O. Neto²; Dolores R. R. Lazar¹

¹ Materials Science and Technology Center, Energy and Nuclear Research Institute, National Nuclear Energy Comission (IPEN-CNEN/SP), Lineu Prestes Avenue, 2242 – Zip Code: 05508-000 – São Paulo, Brazil
² Fuel Cells and Hydrogen Center, Energy and Nuclear Research Institute, National Nuclear Energy Comission (IPEN-CNEN/SP), Lineu Prestes Avenue, 2242 – Zip Code: 05508-000 – São Paulo, Brazil

*E-mail: gcordeiro@usp.br
doi: 10.20964/2017.05.68

Received: 15 February 2017 / Accepted: 4 March 2017 / Published: 12 April 2017

The effect of Sn loading (5–30 mol %) on Pt catalysts supported on reduced graphene oxide was investigated for ethanol electro-oxidation in acidic medium. Reduced graphene oxide was synthesized via graphite oxidation–exfoliation process in liquid phase and chemical reduction. Pt and Pt₅Sn₃ catalysts were deposited on reduced graphene oxide by a NaBH₄ impregnation–reduction method. The adopted procedures allowed the synthesis of graphene-like nanosheets where single Sn-doped Pt nanoparticles were impregnated. Pt lattice parameter and micro-strain increased with Sn addition, confirming the formation of a solid solution. Concerning ethanol electro-oxidation, Pt was more active when supported on reduced graphene oxide whereas the introduction of Sn enhanced the catalyst activity, leading to lower ethanol oxidation potentials and higher current densities.

Keywords: reduced graphene oxide, platinum, tin, ethanol electro-oxidation

FULL TEXT

© 2017 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).